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Abstract 
Nowadays, the growing intersection between artificial intelligence (AI) models and its usage within education, has paved 
the way for innovative approaches to assess and improve engineering education initiatives, particularly those that rely on 
STEAM epistemology principles and, therefore, based on the core elements of Computational Thinking (CT). Projects 
aligned with CT goals, utilize a problem – based solving methodology, inspired by computer science concepts. This 
approach is not limited to coding, but applied to tackling complex open engineering problems, across various disciplines, 
including science, technology, engineering and mathematics, using strategies that are suitable for automation or 
computational modeling. A well-known framework, applicable within STEAM projects, which consists of a series of steps 
that students follow, in order to design a prototype artifact and find a solution to a complex problem is the Engineering 
Design Process (EDP). This paper investigates the impact of AI based methods and tools (i.e. GenAI tools) on STEAM 
engineering literacy among University students, especially within the content of next generation digital systems,  sensors 
and low power devices for precision agriculture application domain. Utilizing a rubric – based assessment and applying 
EDP process, the study evaluates two student teams tasked to design and implement a smart greenhouse, equipped with 
various sensors, actuators, automation and digital systems and data driven analytics capabilities. In particular, team A 
completed the project without using GenAI assistance, while team B employed GenAI tools throughout their design and 
implantation process. Comparative analysis of rubric based outcomes, indicates that GenAI assisted team demonstrates 
superior performance across all key STEAM engineering literacy dimensions, including analytical thinking, innovation 
and practical application of digital systems. Additionally using a pre and post - test design, the study measures knowledge 
acquisition related to digital automation systems, alongside student engagement, confidence in learning and AI tool 
effectiveness. Post - test results demonstrate a significant improvement in STEAM literacy, as well as positive shifts in 
engagement and confidence. Overall, our findings underscore the potential of GenAI, to significantly enhance students’ 
ability to tackle complex, semi – defined engineering problems, highlighting its relevance for modern engineering 
education curricula. 
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Introduction 

The integration of the 21st century competencies into STEAM (Science, Technology, Engineering, Arts and 
Mathematics) education has become a fundamental component in preparing students for the complexities 
of an increasingly dynamic and technologically advanced world. Such an orientation aligns with the global 
emphasis on fostering critical thinking, collaboration, creativity and adaptability, collectively referred to as 
the “4Cs”, which are essential for innovation and sustaining economic competitiveness (Alismail & 
McGuire, 2015; Fajrina, Lufri, & Ahda, 2020). 
Contemporary research underscores the potential of STEAM – based frameworks in aligning educational 
objectives with the evolving requirements of the 21st century. Wulandari (2021) demonstrates how learning 
models, such as discovery learning, problem – based learning and project – based learning foster student – 
centered education, while cultivating higher – order-thinking skills (Wulandari, 2021). In the same direction, 
Krüger and Chiappe (2021), argue that STEAM environments facilitate gamification and inquiry – driven 
strategies, thereby enriching both formative assessment and collaborative experiences (Krüger & Chiappe, 
2021). 

The intersection of artificial intelligence (AI) and STEAM education introduces transformative 
possibilities to redefine both assessment practices and instructional strategies. The adoption of AI – driven 
technologies, in particular, offers significant potential for scalable, adaptive and personalized learning 
experiences. AI can assist in analyzing and evaluating project proposals, identifying alignment with STEAM 
principles and generating constructive and targeted feedback. Such systems not only evaluate teaching 
techniques and resource utilization but also suggests tailored improvements that enhance compliance with 
established STEAM educational standards. For example, Jang et al. (2022) demonstrated that AI infused 
STEAM programs effectively bolster students’ problem – solving skills and positively influence their attitude 
towards technology. Αadditionally, the World Economic Forum (2015), highlights the transformative 
potential of educational technologies in addressing skill gaps, underscoring the value of adaptive learning 
environments to foster persistence, communication and critical thinking.  

The rapid evolution of digital technologies and AI is reshaping education, particularly within the 
STEAM disciplines. Engineering literacy encompasses the ability to apply theoretical knowledge to practical, 
real – world problems and to effectively integrate digital systems (Johnson & Adams, 2016; Martin et al., 
2020). Precision agriculture automations, increasingly reliant on digital technologies, such as Internet of 
Things (IoT) and sensor networks, represents an ideal training paradigm for cultivating engineering literacy 
among University students (Gebbers & Adamchuk, 2010).  

Nonetheless, significant challenges remain in establishing standardized assessment mechanisms and 
global benchmarks for evaluating educational outcomes within STEAM contexts. Variations in teacher 
training, availability of educational resources and National policies affects the implementation of STEAM 
frameworks. Notably, disparities in student STEAM engagement are noted across countries like U.S., 
Malaysia and Australia, indicating the need for tailored interventions and robust measurement tools to 
ensure equality and optimize impact (Maizatulliza & Seng, 2019; Sheffield, et al., 2018). Emerging trends 
suggest that leveraging AI and Large Language Models (LLMs) hold significant potential challenges by 
facilitating scalable assessments and providing insights into STEAM literacy. AI – driven analytics could 
assist educators in diagnosing learning gaps in student understanding, deliver personalized feedback and 
monitor student progress over time. Such innovations are crucial for the realization of a “closed – loop” 
instructional model that continuously adapts to learners’ needs (Wulandari, 2021). Recently, GenAI tools 
have emerged as powerful support for education, capable of enhancing creativity, analytical reasoning and 
real problem-solving skills (Brown et al., 2020; Floridi & Chiriatti, 2020). However, the specific impacts of 
these tools on engineering literacy within STEAM education remain underexplored, particularly regarding 
their practical integration into project-based learning contexts. 
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In light of these insights, this work investigates the impact of AI based models and tools on STEAM 
literacy, among University students, especially within the content of solving open or semi – defined 
engineering problems, focused on digital precision systems for primary production using, sensors, low 
power IoT devices and actuators. It examines the effectiveness of GenAI tools in enhancing STEAM 
engineering literacy among students, working with interdisciplinary subjects. In particular, a comparative 
analysis quantifies the influence of GenAI tools on STEAM literacy, within the context of computational 
thinking (CT) dimensions, including analytical design thinking, innovation and integration of next generation 
digital systems. CT emphasize decomposition, pattern recognition, abstract, algorithmic thinking and data 
visualization, as foundations for cultivating interdisciplinary problem – solving competencies and promote 
real – world application skills. Utilizing a rubric – based assessment and applying the Engineering Design 
Process (EDP), the study evaluates the performance of two student teams, tasked to design and implement 
smart greenhouse automations, using various sensors, actuators, digital systems and data driven analytics 
capabilities. The findings of this study will provide valuable insights for educators aiming to integrate AI – 
driven tools into STEAM curricula effectively. 

Background and Motivation  

Computational Thinking (CT) and Problem Solving 
Computational Thinking (CT) emerges as a critical area of exploration within the context of an 

increasingly digitized world. It is about solving real problems, designing and testing systems, by applying 
fundamental computer science (CS) principles (Wing, 2008). CT is considered as a universal skill that 
complements thinking in science, mathematics and engineering, with a focus on systems (Wing, 2008). 
Contemporary perspectives conceptualize CT as a distinctive approach to problem solving that originates 
from the field of CS. It is regarded as a cognitive process that blends both inductive and deductive reasoning 
and supports the design of systems, as well as, the comprehension of domain – specific solutions (Palomés 
et. al. 2024). Within the context of education, CT is recognized as a transformative force, often described as 
the next significant evolution. Although CT may encompass a variety of interpretations, in this study, it is 
conceptualized as a core competency that enables students to address problems effectively through the 
application of advanced system design and structured methodologies (Lodi et. al, 2021; Montiel et. al 2021). 
In their work, Breeman and Resnick (2012) introduced the dimensions of CT, which include abstraction, pattern 
recognition, problem decomposition and algorithmic design. Following, we highlight the meaning of these dimensions:  

1. Abstraction refers to the process of omitting extraneous or context-specific details in order to 
highlight the essential characteristics and behaviors of a broader, more intricate system. Proficiency 
in abstraction is a foundational skill in system design, as it enables the development of generalized 
models that can be applied across multiple scenarios (Rodríguez, 2021) 

2. Decomposition entails the systematic division of complex problems or datasets into smaller, more 
manageable units. This analytical strategy facilitates a deeper understanding of the problem by 
isolating its constituent parts. Furthermore, components derived through decomposition may be 
reused across different sections of the same system or even in entirely distinct applications (Angeli 
el. al., 2020) 

3. Pattern recognition involves drawing upon prior knowledge to identify similarities, regularities, 
or recurring trends within new problems or datasets. The ability to relate a novel challenge to a 
previously encountered one can significantly simplify the problem-solving process. Mastery of this 
skill contributes to more efficient reasoning and solution development (S. Bocconi el al., 2022) 

4. Algorithm design lies at the heart of computational problem solving. It encompasses the creation 
of clear, precise, and logically ordered sets of instructions intended to resolve a problem within a 
finite timeframe. This component is essential for developing reliable and effective computational 
solutions (S. Bocconi el al., 2022) 

However, Weese and Feldhausen (2017) and Feldhausen, et al. (2018) redefine the computational thinking 
concepts by proposing the following CT concepts, with a focus on the concepts related to CS principles:  

• Abstraction and Problem Decomposition (ABS): It refers to the generalized representation of a 
complex problem.  

• Algorithmic Thinking (ALG): It refers to the discrete sequence of logical steps, necessary to 
complete the solution.  

• Parallelism (PAR): It refers to parallel processing of a task.  
• Decomposition (DEC): It refers to breaking a problem into smaller parts and pieces that can be 

solved independently of each other.  
• Flow Control (CON): Flow control directs algorithmic steps towards problem solution 

completion. 
• Data Collection (DAT): It refers to the data collection from various sources, like sensors, their 

representation and the analytics.  
• Testing and Debugging (TAD): Testing system performance and fixing problems while 

developing a prototype solution.   
 

STEAM Education and Engineering Literacy 
At the core of STEAM education, lies the process of addressing solutions for real – world problems, as 

illustrated in Fig. 1. This approach emphasizes computational thinking along with hands – on experimentation, 
within a cross – thematic and interdisciplinary framework. The epistemology of STEAM education reflects a 
paradigm shift from a disciplinary knowledge to a transdisciplinary that embraces real – world complexity. 
At its core, STEAM epistemology correlates logic with creativity and science with art, and promotes a 
holistic and integrative model of learning (Yakman, 2008). It emphasizes the co – construction of knowledge 
through design, experimentation, iteration and collaborative problem – solving, which foster deeper 
cognitive engagement. STEAM learning is rooted in constructionist theories, which suggest that students 
actively build their understanding through hands – on experiences and dialogue (Papert, 1980). STEAM 
learning promotes a cohesive model grounded in practical applications and authentic challenges.  

 

Figure 1. The heart of STEAM education   
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STEAM education extends beyond traditional STEM, by including “A”rts as a critical domain of human 
creativity and design thinking. This integration allows for more inclusive and diverse learning experiences 
(Land, 2013).STEAM activities help change the learning process by involving appropriate artifacts. The key 
characteristics of STEAM education involve the following goals (Henriksen, 2014):  

• Interdisciplinary learning: Project and challenges require integration of science fields with 
mathematics, engineering and artistic design expression.  

• Creativity and imagination: Emphasis is given on designing, prototyping and testing solutions, 
by applying analytical thinking. Innovation is linked to imagination  

• Problem solving: Students are engaged with real – world, open – ended, authentic problems (i.e. 
smart agriculture, health technologies, industry 4.0, smart cities, environmental sustainability etc.)  

• Inclusion and equity: STEAM framework foster student participation from various 
underrepresented groups through differentiated culturally responsive pedagogies (Bequette & 
Bequette, 2012). 

Engineering literacy is defined as the ability to understand, evaluate and apply engineering concepts and systems 
to solve problems and make decisions (National Academy of Engineering, 2009). It encompasses not only 
technical skills but also awareness of the social, ethical and environmental dimensions of engineering. 
Engineering literacy is vital in STEAM education, as it transforms knowledge integration into tangible 
project outcomes. Following, in this work, we will present our use case, focused on smart greenhouse design 
and automation, in which students are required to apply engineering principles in combination with data 
analytics, sensor networks and automation, thereby bridging theory and practice (Martinez & Stager, 2013). 
The key components of engineering literacy include:  

• Problem solving and design thinking: Ability to define problems, generate solutions, and 
iterate based on feedback. 

• Systems thinking: Understanding how components interact within larger systems (e.g., smart 
cities, precision agriculture). 

• Application of scientific and mathematical principles: Translating theory into practical, 
workable solutions. 

• Collaboration and communication: Working in teams and effectively sharing technical 
knowledge. 

From the above, we understand that there is a close relationship among engineering literacy and STEAM 
education. In essence, STEAM epistemology underpins a learner – centered vie of knowledge creation, while 
STEAM education offers the pedagogical tools to cultivate engineering literacy.  In this direction, STEAM 
engineering literacy refers to students’ ability to effectively integrate concepts from STEAM to creatively solve 
complex and real – world engineering problems. It empowers students to tackle real – world challenges 
through interdisciplinary problem – solving and innovation. STEAM education is inherently 
interdisciplinary; therefore, engineering literacy is the application – oriented core that connects scientific 
knowledge, technological tools and mathematical models to design, to build and to test functional solutions. 
In our use case related to a smart greenhouse project, students use science to understand the climate 
conditions, math to model optimal growing conditions, technology to use sensors, embedded systems and 
microcontrollers, engineering to design automated systems and art to ensure usability and environmental 
sustainability. Engineering literacy move concepts from design to creation, within the STEAM 
interdisciplinary process. 
STEAM Engineering Literacy Assessment 
A crucial part of our work is to measure engineering literacy and estimate how our students adopt STEAM 
pedagogy in combination with CT principles. STEAM engineering literacy assessment can be approached 
through several effective methods related to:  

Rubric – based assessment: In this work, we apply two kinds of rubrics to assess the degree of students’ 
engagement into STEAM engineering literacy activities. The first one relates to NGSS engineering design 
– aligned rubric (Archieve, Inc. 2016; NGSS Lead States. 2013). The Next Generation Science Standards 
(NGSS) is a set of science content standards, developed to improve science education in the U.S., by 
emphasizing deep understanding, practical application and integration across disciplines. A central feature 
of this framework is the integration of engineering design into the science standards and the development of a 
strand of engineering and technology standards. The key features of NGSS are: 

1. Three dimensional learning:  
‣ Disciplinary Core Ideas (DCIs): Key content in physical, earth, life and engineering sciences 
‣ Science and Engineering Practices (SEPs): Identifies what scientists and engineers actually do (i.e. 

the process of asking questions, how to analyze data etc.) 
‣ Crosscutting Concepts (CCCs): Ideas that apply across disciplines (i.e. systems, patterns etc.)   

2. Performance Expectations (PEs): The PEs describe what students are expected to be able to do 
after an instruction  

3. Engineering and Technology Integration: Engineering design is treated as a core discipline, not just 
an add – on.   

The NGSS provides an agreed – upon set of education standards that place a heavy emphasis on practice 
by outlining eight science and engineering practices with which students need to engage. These are: (1) Ask 
questions and define problems, (2) Develop and use models, (3) Plan and carry out investigations, (4) 
Analyze and interpret data, (5) Use mathematics and computational thinking, (6) Construct explanations 
and design solutions, (7) Engage in argument from evidence, and (8) Obtain, evaluate, and communicate 
information. Our NGSS rubric, as appears in Table 1, aligns with these eight practices and reflect the three 
– dimensional learning (i.e. DCIs, SEPs, CCCs).  

Table 1. Engineering design NGSS – aligned Rubric (Archieve, Inc. 2016; NGSS Lead States. 2013) 
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The second rubric, used in this work as Table 2 shows, relies on the work of Kalovrektis et al. (2023) and 
is used to measure students’ engagement degree with CT activities, within the STEAM framework. The 
rubric’s main pillars are based on CT’s dimensions and the evaluation is organized in four levels. The 
educator is free to adjust grade weights (in %) in order to measure a weighted average as a final evaluation metric. 
Rubric – based assessment is an overall assessment mechanism.  
Artifacts Portfolios: Students produce tangible artifacts, by using 3D design programs and 3D printers (i.e. 
smart greenhouse structures). Portfolios document the design process; depict the series of decisions made, 
challenges and final solutions. Along with the artifacts, portfolios include deliverables, which highlight the 
design process, the solution steps and how student overcome challenges. EDP is considered a contemporary 
project based teaching method, appropriate for STEAM interdisciplinary use cases. In essence, students 
collaborate as engineers and follow a series of steps (or phases) to propose a solution to a real – problem 
 
Engineering Design Process (EDP)  
 

The Engineering Design Process (EDP) is a structured, iterative method, applied by engineers, and problem 
solvers to identify needs, generate solutions, solve complex problems, develop new products and systems 
and optimize systems for real – world applications. Unlike scientific inquiry, which aims to help natural 
phenomena understanding, EDP is project – oriented, aiming to design functional products, processes and 
systems, to meet specific constraints (National Research Council [NRC], 2012). EDP consists of several 
unique modes of thinking that teachers use to elaborate and deconstruct the concepts during a project, such 
as understanding the prompt, design concept, iteration, conceptualization, prototyping, discovery, 
assessment, iteration, manufacturing development and final product. To this end, EDP is a series of eight 
phases to find a solution to a problem. The phases include problem definition, information gathering for 
background research, specifying requirements and constraints, team collaboration, brainstorming, solutions 
evaluation, and communication. According to Fig. 2, the eight EDP phases (P) are the following:  
P1: Identify the problem, meaning to understand the nature of the problem and its relationship with specific 
scientific and technology/engineering principles. 
P2: Search or research about the given problem, to understand its nature and to gather information, i.e. 
from e – books, papers, internet sources, GenAI tools, libraries etc. In this phase, students work either 
inside or outside the lab. 
P3: Develop possible solution(s) to the given problem. 
P4: Select one optimal solution, according to criteria or rubric(s). 
P5: Prototype construction, which means that students built a working prototype artifact. 
P6: Test and evaluate solution, which means to test the proposed solution of P4, P5 and proceed with its 
evaluation. 
P7: Solution communication, which relates to a soft skill that engineers need to have when discuss with a 
client. Students prepare appropriate test reports and inform about their prototype functionality, according 
to assessment data. 
P8: Redesign the solution. This phase relates to a potential feedback loop, in case students need to alter and 
redesign parts of the solution provided, to better meet optimization criteria. 

 

 
Figure 2. The eight phases of EDP (Psycharis et. al 2023) 
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Table 2. Computational Thinking Concepts aligned Rubric as proposed in (Kalovrektis et. al, 2023) 

 
 
Large Language Models (LLMs) and Generative AI (GenAI) tools in Education  
 

Large Language Models (LLMs) are considered advanced AI models, designed to comprehend and 
generate human – like language. They are trained on massive datasets of textual content, enabling them to 
understand and generate human – like text (U. Kamath el. al, 2024). LLMs are about to revolutionize both 
teaching and learning. These models manage a large volume of parameters, are trained to be able to process 
and generate natural language (Kasneci et. al, 2023). The real operational innovation is that they ground their 
processing and generation abilities upon large document volumes, being able to operate on the principles 
of statistical regularities of natural language, like grammar and vocabulary. LLMs represent one of the most 
effective systems currently available for a wide range of educational applications, including generating 

content, such as multiple – choice questions, essays, and solutions to mathematical problems; adapting 
assessments to individual learners; and providing accurate automated feedback (Kasneci et. al, 2023; X.Zhai, 
2022). Compared to other automated tools, they stand out for their ability to produce longer, more fluent 
and coherent texts, and for generating credible and logically consistent narratives. 

One of the most significant potentials of large language models lies in their capacity to enable 
personalized learning within real educational environments. By leveraging a fine-tuned model with billions 
of parameters and incorporating a student’s entire interaction history, such systems can offer tailored 
guidance, simulations, and problem-solving approaches that address individual needs and proficiency levels 
(Kasneci et. al, 2023). However, the integration of large language models in education raises several open 
questions. These include ethical concerns, such as the ease of generating original, plagiarism-free AI-
produced texts, and technical challenges, particularly in deploying reliable software for automated 
assessment and instructional support. Despite these issues, with appropriate safeguards and regulatory 
frameworks, the thoughtful use of large language models in educational contexts is both attainable and 
highly promising. Their potential to enrich teaching and learning processes is increasingly recognized by the 
educational research community. To summarize, the main usage of LLMs relates to writing assistance and 
content generation, tasks summarization and code generation. Students may work with LLM tools, mainly on EDP’s 
phase 2 and gather ideas about prototype construction phase.  

Generative AI (GenAI) are considered a broader class of AI systems, designed to generate various 
forms of content, not limited to text, but video, music, even complex digital artifacts. To this end, the typical 
use cases of GenAI based tools relates to generating visual art and graphics, video and animation synthesis, music 
composition, text and audio combinations etc. GenAI is transforming numerous sectors, with education emerging 
as one of the most significant impacted areas. As AI technology continues to evolve rapidly, educators and 
students now have access to advanced tools that can significantly enhance the effectiveness and efficiency 
of both teaching and learning process. Consequently, AI has the potential to significantly redefine the way 
education is delivered and assessed, fostering more effective and student – centered outcomes. As AI 
technologies advance, they offer innovative solutions to persistent challenges in traditional education 
systems – most notably by facilitating personalized learning paths, reducing administrative burdens and 
improving overall quality (Pedro et. al, 2019). The role of AI in education is projected to expand 
considerably, evolving from simple automation towards a more active influence on pedagogical strategies 
and student engagement.  

GenAI is emerging as a transformative force in STEAM education, enabling more dynamic, 
personalized and problem – based learning experiences. GenAI tools empower students to engage more 
deeply with semi – defined and open real – problems, by supporting tasks such as content creation, 
simulation, data analysis and feedbacks. These technologies, not only streamline time – consuming processes 
(writing, coding, data modeling and analysis), but also foster creativity, self – directed learning and iterative 
thinking, which are core to STEAM frameworks (Henriksen, 2014; Holmes et al., 2022). As an example, 
when students design a smart greenhouse system, GenAI can assist in code generation for embedded IoT 
systems, interpret environmental data from sensors, propose a 3D design for the greenhouse housing, 
thereby allowing students to focus more on innovation, system – level thinking and optimization subjects. 
Additionally, GenAI support differentiated instruction by customizing challenges to individual students’ 
levels and needs, helping them bridge knowledge gaps in interdisciplinary contexts (Zawacki-Richter et al., 
2019). In this way, GenAI serves as both a cognitive and creative AI agent, enhancing students’ ability to 
solve complex, real – world problems with greater efficiency. 
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Methodology 
In this section, we focus on the course of Precision Systems Applications for Primary Production 

course, as a use case, to measure to which extend students met the learning objectives by working in STEAM 
real – projects to design and implement smart greenhouse and automations. In essence, the course is an 
undergraduate course taught at the department of Digital Systems, University of Thessaly, Greece. Students 
form two main teams, A and B, and follow the principles of EDP during their project solution process. We 
are mainly interested in assessing how students met learning requirements and acquire engineering literacy, 
by measuring the impact of AI tools during the process. For our qualitative results, we consult the two 
STEAM based rubrics, as shown in Table 1 and Table 2.  

 
Learning Objectives and Project Teams 

 
Automation and Communications engineers design and implement advanced technologies, which may 

lead to sophisticated systems. The technical skills students should develop for the course of applications of 
precision systems for primary production relates to system design, automations programming, sensors, IoT, 
control and communication systems. These elements make the course interdisciplinary and well candidate 
for STEAM course. The learning objectives (LO) of this course are closely related to sensors, automation 
and control, data analytics and smart systems design for primary production environments, with a focus on 
precision agriculture applications such as smart greenhouse. Additionally, students may cultivate design skills 
for the greenhouse housing system. In particular, LO objectives (i.e. what students need to know) associated 
are as follows:  

1. Technical Design Skills:  
• LO1.1: Describe the principles and components of precision agriculture and smart 

farming systems 
• LO1.2: Identify and select appropriate sensors, actuators and embedded systems for 

monitoring and control 
• LO1.3: Design a smart greenhouse prototype system by integrating automation and 

communication technologies 
2. Communication Technologies:  

• LO2.1: Explain the role of IoT in precision agriculture applications 
• LO2.2: Implement wireless communication protocols (i.e. LoRA, ZigBee) suitable for 

sensor networks in agricultural domains.  
• LO2.3: Set up a data acquisition and remote control system for environmental variables 

3. Data Collection and Decision Support:  
• LO3.1: Collect and visualize sensor data  
• LO3.2: Apply statistical analysis and decision making  

4. System Integration and Automation:  
• LO4.1: Integrate embedded low power IoT devices (i.e. Arduino, Raspberry Pi) 
• LO4.2: Program the devices and develop control algorithms for automated 

environmental management.  
• LO4.3: Troubleshoot and optimization automation workflows  
 

To test CT and engineering literacy in practice, se give students an open and real – world problem, related 
to: design a smart greenhouse with sensors, actuators, automations, and communication and IoT technologies to ensure 
production sustainability. Initially, students were divided into two teams: team A that makes no use of AI tools, 
and team B that uses AI tools during design and solution process. Both teams work in parallel, following 

EDP phases. As mentioned before, in EDP we focus on problem solving process, in which students 
participate in groups and work their solution out, in an iterative way, until they reach the best solution, 
which meets problem requirements. Within both teams, we also create three groups, to better facilitate the 
engineering solution process. These are:  

1. Design Group (DES-G): Focuses on the design of the smart greenhouse, including materials 
and architecture. Problems also relate with 3D modelling and components testing 

2. Control and Circuits Group (CC – G): Focuses on the sensors circuitry and precision systems 
automation 

3. Programming Group (PROG – G):  Focuses on the programming, development and testing of 
algorithms and decision making 

4. Communications Group (COMM – G): Focuses on the communication infrastructure, the 
sensor network, IoT and protocols.  

 
For bigger projects, we suggest adding more groups, related to: Project Management for efficient project 
planning, deliverables submission and resource allocation, Research and Development for exploring innovative 
technologies and advancements and taking part in several competitions.  
 
The Use Case: Digital Systems for Precision Agriculture 

In this study, 126 undergraduate students from the Department of Digital Systems, University of 
Thessaly. In particular, as shown in Table 3, the gender distribution is 72.2% males (91 students) and 27.7% 
females (35 students). As noted above, we evenly distribute students in team A and B. Within each team we 
further distribute students among groups. According to Table 3, 67% of students feel familiar with using 
GenAI based tools. The STEAM scenario lasted approximately one semester and all students engaged 
themselves for one month, as a preparatory phase, to familiarize themselves with all necessary digital tools 
and technological concepts, necessary to develop the project’s solution. 

 
Table 3. Participant Students 

Age Gender Experience with AI tools 
Mean Prior experience 
with AI 

Mean ± SD: 21.3 ± 1.9 
years 

Male: 91 students 
(72.2%) 

Prior experience with AI tools: 48 
students (67%) 

10.1 +- 1.9 months 

18-25 years: 118 
students (93%) 

Female: 35 students 
(27.7%) 

Prior experience with STEAM 
projects: 21 students (16.6%) 

 

 
Following the work from Chatzopoulos el. al (2024), in Fig. 3 we depict the problem decomposition 

into several areas, as several sub – problems, following CT dimensions philosophy of decomposition. In 
essence, we recognize two sub – problems per student group, which focuses properly on each group. Each 
group is illustrated with a difference color code, same as each sub – problem. During the first two EDP 
phases, each group, from team A and B, works in parallel to gather information and categorize information 
about the nature of the problem. Let us recall that only team B has access to GenAI tools additionally along 
the way. In the sequel, in phase 3, groups focus on several tasks, each of which relates to the nature of each 
sub – problems.  



7  A. Xenakis, AI – based Models for Assessing STEAM Engineering Literacy 
 

HJSTEM – Hellenic Journal of STEM Education, 2025, 4(1), 1-9  www.hellenicstem.com 

 
Figure 3. Smart Greenhouse problem decomposition according to EDP (Chatzopoulos et. al 2024) 

In the sequel, in phases 5 and 6, groups work with the solution design and prepare their prototype. In 
Figures 4 and 5, we depict paradigms of the teams’ greenhouse design and part of the sensors and circuitry 
automation during design and implementation phases of EDP. Following, in phase 7, students prepare 
technical reports and communicate their findings. Finally, in phase 8 a feedback loop is activated and 
decision making is done as to whether the final artifact meets the criteria and solves the initial problem.  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Smart Greenhouse design prototype (left) and circuit for motion sensors (right) 

     
Figure 5. Soil moisture sensor circuitry (left) and password protected shields automation (right)  

 

Results and Discussion 

In order to examine if both student teams achieved the expected learning outcomes, we firstly test the 
functionality of their final artifact. We use the NGSS engineering design related rubric in Table 1 to compare 
team A and team B and to quantify the impact of GenAI based tools during problem solving process. 
According to Table 1’s rubric, 3 points mean exceeds expectations, 2 points mean meets expectations and 1 point 
mean need improvement. Clearly from Fig. 6, we understand that the impact of using GenAI tools has a positive 
impact on the students’ performance, across all sub – groups. According to Fig. 6, team B scored higher 
than team A in all CT criteria, with mean = 2.19 and std = 0.36 for team A and mean = 2.77 and std = 0.22 
for team B. 

 

 
Figure 6. Impact of AI assistance – Comparison of Team A and B (NGSS rubric) 
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Following, according to the 2nd rubric of Table 2, we assess the impact of AI as far as CT criteria is 
concerned, comparing the scores of both team A and team B. In this scenario, we have six CT criteria and 
the grading is an average of four distinct levels, ranging from level 4 (perfect) to level 1 (insufficient). 
According to Fig. 7, team B scored higher than team A in all CT criteria, with mean = 3.18 and std = 0.32 
for team A and mean = 3.35 and std = 0.1 for team B. 
 

 
Figure 7. Impact of AI assistance – Comparison of Team A and B (CT rubric) 

Finally, we measure students’ attitudes towards STEAM pedagogical methodology, as combined with EDP 
and CT dimensions. To this end, we gave both teams (A and B) a Likert 5 – scale questionnaire, ranging 
from 1 (strongly disagree) to 5 (strongly agree). According to Fig. 8, the majority of students strongly agree 
and agree that STEAM as combined with EDP process and hands – one activities, helps them better 
understand the nature of the open problem. Additionally, sub – problems related to communication protocols, 
sensors and circuits pose the biggest difficulty to students, as far as implementation is concerned. 

 

 

 
Figure 8. Evaluate STEAM and EDP efficiency (left) and most difficult activity (right) 
 
Conclusions 

In conclusion, the integration of GenAI based tools into educational settings demonstrates significant 
potential in supporting students to achieve their learning outcomes, in a more efficient way. GenAI 
empowers learners to navigate complex tasks with greater clarity and confidence, by providing personalized 
assistance, immediate adaptive feedback and intelligent content creation. This kind of support, not only 
enhances academic performance, but also fosters deeper engagement with interdisciplinary content, 
especially in the cases of semi – defined and open project – based learning materials. Specifically, GenAI 
proves to be a valuable asset in cultivating STEAM engineering literacy. According to our findings, it enables 
students to bridge theoretical knowledge with practical applications, by guiding them through iterative 
problem – solving and system design – key dimensions of engineering thinking. As students leverage GenAI 
to explore real-world challenges, such as designing smart agricultural systems, they develop the cognitive 
and technical skills essential to STEAM fields. Ultimately, the use of GenAI tools not only enriches learning 
experiences but also equips students with the competencies needed to innovate and collaborate in 
increasingly technology-driven environments 
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